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I have a broad interest in arithmetic geometry and related subjects and I especially
enjoy developing and applying tools from varied fields to questions in arithmetic
geometry (and vice-versa). Most notably, Andrew O’Desky and I (Project 1.1) develop
a combinatorial framework to compute motivic invariants of certain natural moduli
space in algebraic geometry. In the other direction, my ongoing work (Project 1.2) with
Colin Crowley, Connor Simpson and Botong Wang) tackles an outstanding conjecture
on matroids, taking inspiration from algebro-geometric methods.

Within algebraic geometry, a major theme of my work concerns moduli spaces. I
have also recently developed an interest in arithmetic dynamics and I combine these
two interests to study the dynamics of Hecke correspondences on moduli spaces and
more specifically, "unlikely and just likely intersections" (Section 2).

I give a brief synopsis of my various projects here and expand on them in the rest
of this Statement.

• Project 1.1: [OG22] is joint work with Andrew O’Desky. It is concerned with the
development of novel combinatorial tools in order to compute motivic invariants
of moduli spaces of polynomials with a fixed factorization type.

• Project 1.2: This is a project in progress (joint with Colin Crowley, Connor
Simpson and Botong Wang). We aim to prove an equivariant version of various
log concavity statements related to matroids.

• Project 2: This project concerns the question of "unlikely and just likely intersec-
tions" on Shimura varieties. In [G.22b], I prove the first general results towards a
conjecture on unlikely intersections of arbitrary subvarieties on Shimura varieties
formulated by Shou Wu-Zhang’s AIM group in the context of a product of
modular curves. In [?], Ananth Shankar, Qiao He and I prove the conjecture for
Hilbert modular varieties over a finite field (with mild restrictions).
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• Project 3.1: [G.22a] proves a novel result in non-abelian Iwasawa theory in order
to prove a geometric statement about the convergence of certain characteristic
polynomials in a tower of curves. At its core is an elementary statement regarding
a matrix generalization of Fermat’s little theorem.

• Project 3.2: In joint work with Yifan Wei and John Yin, we generalize and prove
a conjecture [BCFG22, Conjecture 1.2] about p-adic densities of polynomials
with a given factorization type. In doing so, we prove a version of Chebotarev’s
theorem for non-archimedean local fields like Qp.

1 combinatorics

1.1 Configuration spaces, graded spaces, and polysymmetric functions

Recall the following classical result of Gauss.

Theorem 1 (Gauss). The number of monic, irreducible degree d polynomials in 1 variable
over the finite field Fq is given by

Nd,1(q) = ∑
m|d

µ(m)qd/m.

One is naturally led to ask the same question when the polynomials are allowed to
have many variables. In this context, one needs to make a distinction between arithmetic
and geometric irreducibility1. For technical reasons, we find it more useful to work with
homogeneous polynomials in n + 1 variables and we define Narith

d,n (q) (respectively
Ngeom

d,n (q)) to be the number of arithmetic (respectively geometric) irreducible degree
d polynomials in n + 1 variables up to scaling by F×

q . We prove

Theorem 2. We have the following generalizations of Gauss’ result.

Narith
d,n (q) =

1
d ∑

m|d
mµ( d

m ) ∑
λ⊢m

(−1)ℓ−1 (ℓ− 1)!
n1! · · · nm!

m

∏
k=1

(
1 + q + · · ·+ q(

n+k
k )−1

)nk
,

Ngeom
d,n (q) =

1
d ∑

m|d
mµ( d

m ) ∑
λ⊢m

(−1)ℓ−1 (ℓ− 1)!
n1! · · · nm!

m

∏
k=1

(
1 + qd/m + · · ·+ qd/m[(n+k

k )−1]
)nk

.

In proving this result, it is useful to consider the moduli space Md,n of irreducible
homogeneous polynomials of degree d in n + 1 variables (up to scaling). It is an open
subset of the projective space Xd,n = P(n+d

d )−1 and crucially, polynomial multiplication
induces maps Xd,n × Xe,n → Xd+e,n that makes the collection {Xd,n : n ≥ 1} into

1 i.e., irreducibility over Fq versus irreducibility over Fq.
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a graded monoid space. Whenever we have such a collection of spaces satisfying
"unique factorization", [OG22, Theorem 0.1] compute the class of Md,n in terms of
the class of Xd.n in the Grothendieck ring of varieties which can be considered as a
"universal" euler characteristic.

In order to prove these general results, we define PΛ, the ring of polysymmetric
functions as an extension of the classical theory of symmetric functions. Very briefly,
one can consider polsymmetric functions to the theory of symmetric functions with
weighted variables [OG22, Part 1]. We extend several constructions from the classical
theory including a generalization of partitions called types which record the possible
factorizations of a degree d polynomial. Using the notion of types, we define analogues
of the classical elementary, homogeneous, monomial and power symmetric bases.
Moreover, we find a new symmetry and partial order not found in the classical theory.

The final ingredient that is needed is the notion of graded plethysm, extending the
classical notion of plethysm on Lambda rings. Lambda rings were originally defined
by Grothendieck in the context of the Grothendieck-Riemann-Roch theorem. The
prototypical example of a Lambda ring is the ring of representations of a group and
the lambda operations axiomatize the operations of symmetric and exterior products.

The Grothendieck ring of motives K0(var) also has the structure of a Lambda ring
but it is deficient in one important respect - it is not a special lambda ring. We use the
ring of polysymmetric functions PΛ as a replacement for K0(var) in order to prove
our theorems.

Moreover, we can use types to give a stratification of Xd,n parametrizing the space
of polynomials with a given factorization type. We give a recursive formula for these
strata [OG22, Section 7] and show that they are closely related to the graded plethysm
operations in a natural "combinatorial" setting [OG22, Section 8].

1.2 Equivariant log concavity

There has been much recent work in proving the log concavity of sequences, inspired
by techniques from algebraic geometry ([AHK18],[HW17] among many others). For a
survey of the field, see [Huh22] and [Kal22].

To take a concrete example, consider a finite collection of vectors V ⊂ kn in a vector
space over a field k. For each positive integer k, we define Ik ⊂ P(V) to be the
collection of subsets of V of size k consisting of linearly independent vectors. So for
instance, I1 has elements corresponding to the non-zero elements in V . If V is itself
a collection of linearly independent vectors, then Ik is simply the collection of all
subsets of V of size k. More generally, we can consider any matroid and consider the
collection of independent sets of size k for each k as above.
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Mason [Mas72] conjectured that the sequence (#I1, #I2, . . . ) is a log-concave se-
quence2 for any matroid. This conjecture (and some stronger versions) have been
recently proven by [AHK18],[ALGV18],[BH18],[BH20] among others. We consider a
strengthening of this conjecture in a different direction. Returning to our example
above, let G be a subgroup of the permutations of V that preserve the notion of linear
independence (and for an arbitrary matroid, we define G to be the automorphisms
of the ground set that preserve the notion of independence). Then G will act on the
sets Ik and we define Pk := k[Ik] to be the corresponding permutation representations.
One is naturally led to the following conjecture (Mason’s conjecture corresponds to
the case where G is the trivial group).

Conjecture 3. For any 1 ≤ a ≤ b ≤ c ≤ d with a + d = b + c, there is a G equivariant
injection Pa ⊗ Pd → Pb ⊗ Pc.

One can make analogous conjectures for various other algebraic invariants associated
to a matroid such as the Orlik-Solomon algebra. [GPY17] and [MMPR21] formulate
such conjectures, prove it in some very special cases and provide numerical evidence
for the conjecture in general.

In our work so far, we have a refinement of the above family of conjectures where
we define an explicit G-equivariant map Pa ⊗ Pd → Pb ⊗ Pc and it remains to prove that
this is an injective map. If successful, our approach would give an alternate proof of
Mason’s conjecture bypassing the earlier work on this question.

2 unlikely intersections of subvarieties on a shimura variety

There has been much recent interest on questions of just likely and unlikely intersections
on Shimura varieties. As the simplest case, consider two families of elliptic curves
E ,F relative to C, a curve over a finite field or the ring of integers of a number field
(possibly localized at some finite set of primes). In these cases, it is known under
mild restrictions on the two families that there are infinitely many geometric points
x ∈ C such that the fibers Ex and Fx are isogenous to each other ([CO06, Proposition
7.3],[Cha14]).

To better understand this result, let us reformulate it in terms of moduli spaces. A
family of elliptic curves over C gives rise to a map

C → X(1)
x → j(Ex)

where X(1) is the modular curve so that our set up above corresponds to a map
f : C → X(1)× X(1). The geometric points x ∈ C such that Ex is isogenous to Fx
correspond exactly to the intersection of f (C) with TN(∆), a Hecke translate of the

2 i.e., #I2
k ≥ #Ik−1#Ik+1.



families of totally split abelian varieties 5

diagonal ∆ ⊂ X(1)2. Since f (C) and TN(∆) have complimentary dimension, we expect
there to be finitely many points in this intersection for any fixed N and the question
is about the behaviour as N → ∞. Such results have been generalized to families of
abelian surfaces ([MST22b],[ST20]) and K3 surfaces ([MST22a],[SSTT19]).

Briefly, these papers consider the intersection of a curve C with a "special divisor"
D in a Shimura variety and show that the number of distinct points in the intersection
C ∩ TN(D) grows without bound for {TN : N ≥ 1} a sequence of Hecke translations.
To do this, they bound the local intersection number (C ∩ TN(D))x uniformly in N
but on the other hand, also show that the global intersection number C ∩ TN(D) → ∞
as N → ∞. These two facts together prove the desired result. Crucially, they provide
the local bound by appealing to the moduli interpretation of the associated Shimura
variety and applying deformation theoretic techniques while the global intersection
number computation is related to the Fourier coefficients of a modular form using the
"specialness" of D.

Despite the proofs relying heavily on such moduli theoretic considerations, these
problems can be naturally phrased for arbitrary subvarieties of a Shimura variety.
Indeed, this was done by an AIM group working under Shou-Wu Zhang (Section 3.4).

Conjecture 4. Let S denote a simple Shimura variety (over some base), and suppose that
V, W are generically ordinary subvarieties having complementary dimension. Then the set of
points in V isogenous to some point of W is Zariski-dense in C. Further, the subset of V × W
consisting of pairs of isogenous points is dense in V × W.

In this generality, the conjecture is known in very few cases. Perhaps most signifi-
cantly, it is known in complete generality in the geometric case, i.e., over C by [TT21].
The aforementioned work [Cha14] deals with the case where S = Y(1) relative to Ok,
the ring of integers of a number field (using the same strategy of proof as described
before). In all other cases, it seems very hard to directly extend the older methods of
proof to tackle the above conjecture when V, W are allowed to be arbitrary subvarieties.

We provide the first evidence for the above conjecture for arbitrary subvarieties in
an arithmetic setting.

2.1 Families of totally split abelian varieties

In [G.22b, Theorem 6], I prove the above conjecture (suitably modified) for S = Y(1)n.
This result naturally leads to the question where dim V + dim W ≪ dimS . In the
number field setting, the above is impossible if one of V, W is special by the Zilber-Pink
conjecture (see [HP16, Conjecture 2.2]).

Over a finite field, [ST18] formulates the following heuristic in this direction. Let
Isn(m) be the set of isogeny classes corresponding to the abelian varieties parameter-
ized by Y(1)n(Fqm). [DH98, Theorem 1.1] shows that the size of the set Isn(m) is about
qnm/2 (as qn → ∞) . It seems reasonable to treat the map i : Y(1)n(Fqm) → Isn(m)

https://aimath.org/pastworkshops/intersectshimuraV.html
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sending a point x ∈ Y(1)n(Fq) to the isogeny class of the corresponding abelian
variety Ax as a random map and suppose that every isogeny class is of size qnm/2

(ignoring problems related to supersingularity and the like). Let V, W ⊂ Y(1)n now
be curves. For n ≥ 2 and m large enough, one would expect |i(V(Fqm))| ∼ qm and
|i(V(Fqm)) ∩ i(W(Fqm))| ∼ q2m/qnm/2. Summing over all m, one expects that the
number of points on V geometrically isogenous to a point on W is approximately
(1 − q2/qn/2)−1 which is a finite quantity (for n ≥ 5). Surprisingly, I find two infinite
families of counter examples to this heuristic in [G.22b, Theorems 13,14] - there exist
curves Cn, Dn in X(1)n (for n arbitrarily large) such that there are infinitely many
points on Cn isogenous to some point on Dn.

2.2 Abelian surfaces with real multiplication

In [?, Theorem 1.1], Ananth, Qiao and I prove the conjecture for S a Hilbert modular
surface over Fp with the restriction that p splits in the ring of endomorphisms. In
this case, S does not have a global product structure but we use our assumption on p,
endomorphism ring to construct a local splitting of the Frobenius in order to complete
the argument.

As a by-product of our analysis, we also compute the change of Faltings height
under isogeny for Abelian surfaces parametrized by such S .

3 p-adic analysis

3.1 On the variation of the Frobenius in a non abelian Iwasawa tower

The eigenvalues of the Frobenius on the étale cohomology of a smooth, projective vari-
ety over a finite field carry significant arithmetic information. By the Weil conjectures,
these eigenvalues are algebraic integers and their absolute values under any complex
embedding are understood.

In [G.22a], I draw inspiration from Iwasawa theory to study the asymptotic be-
haviour of these eigenvalues in an "Iwasawa tower" and in particular, show that
there is a strong ℓ-adic convergence statement to be made in many natural examples.
Consider the following example.
Example 1. Consider the tower defined by the smooth projective models corresponding
to the equations

Cn : Y2 = X3n
+ 1 over F2

with maps Cn+1 → Cn defined by (X, Y) → (X3, Y). The characteristic polynomial of
σ2 on H1

ét(Cn, Zℓ) is

fn(x) := det
(

1 − σ2x|H1
ét(Cn, Zℓ)

)
=

n

∏
i=1

(1 + x2·3i−1
23i−1

).
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Note that fn−1(x) divides fn(x) and the inverse roots of gn(x) = fn(x)/ fn−1(x) are of
the form −

√
2ζ for ζ a root of unity of order 2 · 3n−1. I show that for n sufficiently

large, the normalized (so that the complex absolute values is 1) roots of gn+1(x) are
exactly all possible ℓ roots of the normalized roots of gn(x).

In fact, I prove the same statement for towers of Fermat curves (from which the
above follows) and Artin-Schreier curves.

This prompts the question of what happens in a more general context. For instance,
one could take a map f : C → P1 or f : C → A for A an abelian variety of dimension
d and pull back by the following diagrams:

Cn P1 or Cn A

C P1 C A

πn

fn

t→tℓ
n

πn

fn

[ℓn]

f f

For simplicity of notation, we will only consider the first case here. Note that the
Cn → C are geometrically (branched) Galois extensions with an abelian Galois group
Gn ∼= (Z/ℓnZ)b for b = 1 in Case A and moreover, the Gn themselves have an action
of σq.

Let Mn = H1
ét(Cn, Zℓ)/H1

ét(C, Zℓ) and define the characteristic polynomials

fn(x) = det
(
1 − σqx|Mn

)
, gn = det

(
1 − σqx|Mn/Mn−1

)
.

It does not seem to be true that gn determines gn+1 as in Example 1. Nonetheless, the
following weaker convergence statement is true. For simplicity again, we assume that
q is a prime power such that q − 1 is divisible by ℓ but not ℓ2.

Theorem. [G.22a, Theorem 12] There is a factorization

fm(x) = ∏
n≤m

hn(xℓ
n−1

)

for some polynomials hn(x) ∈ Z[x] independent of m. Moreover, the following congruence

hn+1(x) ≡ hn(x) (mod ℓn)

holds so that the limit h∞(x) = limn hn(x) exists inside Zℓ[x].

The convergence of the hn(x) is quite unexpected and striking and I prove it by
proving a more general theorem about the convergence of certain sequences of matrices
related to non-abelian Iwasawa theory. Note that this more abstract statement can
be applied to many more geometric contexts than just our two examples of towers
of curves above although I do not pursue this in our paper. It applies to any tower
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of varieties with an action of an abelian group such that the Frobenius action on the
cohomology has a "large" orbit. For instance, one could take hypersurfaces of the form

f (xℓ
n

0 , . . . , xℓ
n

n ) = 0 ⊂ Pn
Fq

.

To keep notation simple, the following is a special (yet non-trivial) case of the
general ℓ-adic convergence theorem.

Theorem. [G.22a, Theorems 7,8] Let F(t) be a r × r matrix with entries in Zℓ[t]. Suppose
that q is a prime such that q − 1 is divisible by ℓ but not ℓ2. For each n ≥ 1, define the matrix

An =
ℓn−1

∏
i=1

F(ζqi

ℓn)

with characteristic polynomial pn(x). Then, the limit p∞(x) = limn pn(x) exists and more
precisely, the following congruence is true:

pn+1(x) ≡ pn(x) (mod ℓn).

3.2 The density of polynomials with a given factorization type

Let us identify the points of Pn over some field k with univariate polynomials (up-to
scaling). Given a "factorization type" τ, we can form the subset of polynomials Xτ

in Pn(k) with the given factorization type τ. For instance, τ might correspond to
polynomials that factor completely over k. A natural question is to ask about the
relative proportions of Xτ as we vary over τ. This question is highly sensitive to the
base field - over an algebraically closed field all polynomials split completely while
over a finite field Fq, the limiting proportions (for large q) are given by the Chebotarev
theorem.

In on-going work with Yifan Wei and John Yin, we aim to answer this question over
k a non-archimedean local field like Qp. In this setting, we mean "Haar measure" by
proportion and the interest is in the exact formulas ρ(τ; p) for any fixed p. In [BCFG22,
Conjecture 1.2], they conjecture that ρ(τ; p) is a rational function in p that satisfies
the remarkable symmetry ρ(τ; 1/p) = ρ(τ; p). In our current work, we generalize
this conjecture (suitably modified) to any generically Galois, finite map X → Y over a
p-adic field and prove it in many (if not all!) cases.
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